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What is Polygon Mesh?

* A polygon mesh is a collection of vertices, edges, and faces that
defines the shape of a polyhedral object in 3D computer
graphics and solid modeling.
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Example — Polyhedral widgeon

6656 faces ([fi]), 3474 vertices (171 ;)
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Categories of Polyhedron (ZHE{R)

* Polyhedron are essentially linear approximation
* Triangular meshes (= M1&)
WATATIEESY

* Polygonal meshes (Z1OFZM1E)

—

e Quadrilateral meshes (V
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Volumetric Scanning

 Build voxel structure by scanning slices
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Volumetric Scanning

 Build voxel structure by scanning slices

Computer Graphics



Photogrammetry

* Reconstruction from photographs




Photogrammetry

e Reconstruction from a series of photos (video)
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Range Scanning
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e Reconstruction from point cloud




Getting Meshes from Real Objects

* Many models used in Graphics are obtained from real objects

Stanford dragon

e Faces: 871414

e \Vertices: 437645

e Compressed: 8.2 MB
in PLY format




Getting Meshes from Real Objects




Range Scanning

* Accurate calibration is crucial

* Multiple scans required for complex objects
* scan path planning
* scan registration

e Scans are incomplete and noisy
* model repair, hole filling

* smoothing for noise removal

Computer Graphics




Range Scanning: Reconstruction

Set of raw scans Reconstructed model
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General Used Mesh Files

* General used mesh files  Storage

* Wavefront OBJ (*.0bj) * Text — (Recommended)
e 3D Max (*.max, *.3ds) e Binary
« VRML(*.vrl)

Inventor (*.iv)

PLY (*.ply, *.ply2)

User-defined(*.m, *.liu)

*
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Wavefront OBJ File Format

* \ertices
* Start with char ‘v’ 4 L0y e
* (x,y,z) coordinates v 001000
v 0.0-1.0 0.0
* Faces
. v 0.0 0.0 1.0
e Start with char ¥’
. . o . f123
* Indices of its vertices in the file
Oth _ f142
* Ot t
er properties £39 4
 Normal, texture coordinates, material, etc. £132

AVSY
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Wavefront .obj file

# List of Vertices, with (x,y,z[,w]) coordinates, w is optional and defaults to 1.0.
v0.1230.2340.345 1.0

Vo

# Texture coordinates, in (u,v [,w]) coordinates, these will vary between 0 and |, w is optional and
default to 0.
vt 0.500 | [0]

# Normals in (x,y,z) form; normals might not be unit.

vn 0.707 0.000 0.707

vn ...

# Parameter space vertices in ( u [,v] [,w] ) form; free form geometry statement ( see below )
vp 0.310000 3.210000 2.100000

VP ...

# Face Definitions (see below)
fl123

f3/1 4/25/3

f6/4/1 3/5/3 7/6/5

f..
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Meshes:

Definitions & Terminologies
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Standard Graph Definition

G =<V,E>

V = vertices =
{A.B.C,.D,E,F,.G,H,I.JK,L}

E = edges =
{(A,B),(B,C),(C,D),(D,E).(E,F).(F,G),
(G,H),(H,A),(AJ),(A,G),(B,J).(K,F),
(C,L).(C.1),(D.1),(D,F),(F.1),(G,K),

H (J,L).(J,K).(K,L),(L,1)}

Vertex degree (valence) = number of edges incident on vertex
deg(J) =4, deg(H) =2
k-regular graph = graph whose vertices all have degree k

Face: cycle of vertices/edges which cannot be shortened
F = faces =
{(AH,G),(AJKG)(B,AJ),B,C,LJI),CILI)(C,D,D,
(D,E,F),(D,I,F),(L,I,F.K),(L,J,K),(K,F,G)}

Computer Graphics




Graph Embedding

Graph is embedded in Rd if each vertex is
assigned a position in Rd

I
/

Embedding in R2 Embedding in R3

Computer Graphics




Triangulation

Triangulation: straight line plane
graph all of whose faces are triangles

Delaunay triangulation of a set of
points: unique set of triangles

such that the circumcircle of

any triangle does not contain any other
point

Delaunay triangulation avoids long
and skinny triangles

Computer Graphics




Meshes

Mesh: straight-line graph embedded in R3

Boundary edge: adjacent to exactly one face
Regular edge: adjacent to exactly two faces
Singular edge: adjacent to more than two
faces

Closed mesh: mesh with no boundary edges
Manifold mesh: mesh with no singular edges

Cornersc VX F
| Half-edges c EXF

Non-Manifold Closed Manifold Open Manifold
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Topology

St Genus of graph: half of
maximal number of closed paths
that do not disconnect the graph

(number of “holes”)

Genus(sphere)=0
Genus(torus) = 1

Computer Graphics




Developablity (B] FE14)

Mesh is developable if it may be embedded in R2 without distortion

Computer Graphics



Developablity (B] FE14)
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Mesh Data Structure

* How to store geometry and connectivity?

* Geometry queries
* What are the vertices of face #k?
* Are vertices #i and #j adjacent?

* Which faces are adjacent face #k?

* Geometry operations
 Remove/add a vertex/face
* Mesh simplification

* Vertex split, edge collapse
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Define a mesh

* Geometr 7 =
ertex coordinates ""yf‘»%“;éﬁ'é: I
AN

il

* Connectivity
e How do vertices connected?
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List of Edge
Vertex-Edge

Vertex-Face

Combined
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List of Faces

e List of vertices

* Position coordinates

e List of faces

* Triplets of pointers to face vertices (c1,c2,c3)

* Queries:
e What are the vertices of face #37
* Answered in O(1) - checking third triplet

* Are vertices i and j adjacent?

e A pass over all faces is necessary — NOT GOOD

*
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List of Faces — Example

: V
vertex coordinate 2
Vi (X1.¥1,21) .
face vertices (ccw)

V) (X0.¥2:2) £ VAV

1 (V1, ¥2. V3)
V3 (X3.¥3.23) f, (V7. V. V3)
Wy (Xdl:}rfl-rzq-j f3 (1*"3: v:]-a vﬁ)
"5."5 (XS:}FSrzﬂj fq_ (1'5:"4_., 1*'?5:- vﬁ)
1-"5 (Xﬁ:yﬁrzﬁj




List of Faces — Analysis

* Pros:
e Convenient and efficient (memory wise)
* Can represent non-manifold meshes

* Cons:

* Too simple - not enough information on relations between

vertices & faces
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Adjacency Matrix — Definition

* View mesh as connected graph

e Given n vertices build n*n matrix of adjacency
information
e Entry (i,j) is TRUE value if vertices i and j are adjacent
* Geometric info
* list of vertex coordinates

e Add faces

* list of triplets of vertex indices (v1,v2,v3)

Computer Graphics




Adjacency Matrix — Example

vertex coordinate
Vi (X1:¥1:2,)
Va (X).¥:2,)
V3 (X3.¥3.25)
\ (X,.¥4:2,)
Vs (X5.¥5.Z5)
Vs (XsYeZo)
face vertices (ccw)
f; (Vy, Vp. V3)
f, (V,, Vy V3)
f, (V3. V. Vo)
f, (Vy, Vs, V)

Computer Graphics

s
vy 1
v, 1
V3
v, 1
Vs
Ve 1




Adjacency Matrix — Queries

* What are the vertices of face #37?

* O(1) — checking third triplet of faces
* Are vertices i and j adjacent?

* O(1) - checking adjacency matrix at location (i,j).
* Which faces are adjacent to vertex j?

 Full pass on all faces is necessary

AN
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Adjacency Matrix — Analysis

* Pros:
* Information on vertices adjacency
 Stores non-manifold meshes

* Cons:

* Connects faces to their vertices, BUT NO connection
between vertex and its face

Computer Graphics




Half-Edge Structure

* Orientable 2D manifolds and its sub set: special polygonal
meshes (IEETERN"4ERF)
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Half-Edge Structure

e Half-edge (each edge corresponds to two half-edges)

* Pointer to the first vertices

To adjacent face

To next half-edge (FBETET/5[A))
To the other half-edge of the same edge

To previous half-edge (opt.)
—> Half-Edge
Face
struct HE_edge { O vent

ertex
HE_vert* vert; // vertex at the start of the half-edge Next

HE_face* face; // face the half-edge borders /| » 2%\ 7 > Half-Edge face

HE_edge* pair; // oppositely oriented adjacent half-edge
HE_edge* next; // next half-edge around the face

HE_edge* prev; // prev half-edge around the face
b

http://coderender.blogspot.com
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Half-Edge Structure

* Face . we only need a pointer to one of its half-edge

Half-Edge
Face
Vertex

Next
Half-Edge face

http://coderender.blogspot.com

struct HE_face {
HE_edge* edge; // one of the half-edges bordering the face




Half-Edge Structure

* Vertices
* 3D coordinates
* Pointer to the half-edge starting from it

struct HE_vert {
float x;
floaty;
float z;
HE edge* edge; // one of the half-edges
//emantating from the vertex

Computer Graphics




Example: half-edge structure

Computer Graphics

=1 LR YN rSFE=N:0E SVl " | F4
V4 (X1,¥1521) €7 1 fi €411
Vo (X,,¥2,25) €11 f, €32
V3 (X3,¥3,73) €4 1 f €40
V4 (X4,Y1,24) €71
Vs (X5,Ys-Zs) 51




Example (continued)

€31 Vs €32 f, €11 €5 1
€30 Vs €3 1 f5 €41 €5 1
4.1 Vs €42 f €5 €3,




One-Ring Traversal

1. Start at vertex

wx
R
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One-Ring Traversal

1. Start at vertex

2. Outgoing halfedge /o\
: / N
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One-Ring Traversal

1. Start at vertex

2. Outgoing halfedge O
3. Opposite halfedge /] \

2 &#:) Computer Graphics
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One-Ring Traversal

1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
4. Next halfedge

2 &#:) Computer Graphics
"“uﬁ =




One-Ring Traversal

Start at vertex
Outgoing halfedge

Opposite halfedge / \.
Next halfedge \ A
Opposite \ o/

a &~ w0 h =

c ) Computer Graphics



One-Ring Traversal

Start at vertex
Outgoing halfedge

Opposite halfedge o/ \o
Next halfedge \
Opposite \ o

—>

Next

N o oA N~

c ) Computer Graphics



Traversal operations

Vertices adjacent to a vertex v, mesh without
boundary
he = v->halfedge;
do {
he = he->sym->next;
// perform operations with
// he->vertex
} while (he != v->halfedge)

No “If” statements.

AV
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Basic operations

e Mark mesh boundary (fRICIZR )
* Create edge adjacency (EllZZ2SB#E10)
* Add vertex (IENTRAR)

* Add edge (1&M118)

« Add polygonal face (IZ10H)

« Delete polygonal face (HIFRE)

* Delete edge (IBF123)

* Delete vertex (fIBRIT )

i&i#:) Computer Graphics



Discussion

* Advantage and disadvantage({L&R/) :

e Adv. : Querytime O(1) , operation time O(1)

* Dis. : redundancy & only applicable to 2D manifolds
* For more information refer to

 CGAL :

» the Computational Geometry Algorithms Library , http://www.cgal.org/

* Free for non-commercial use

* OpenMesh : http://www.openmesh.org/

* Mesh processing

* Free, LGPL licence

* Meshlab: http://meshlab.sourceforge.net/

Computer Graphics



http://www.cgal.org/
http://www.openmesh.org/
http://meshlab.sourceforge.net/

Advantage and disadvantage in polygon representation

* Advantage
* Simplicity - ease of description
* Based data for rendering software/hardware
* Input to most simulation/analysis tools
* Output of most acquisition tools

e laser scanner, CT, MR, etc...

*
i&i@:) Computer Graphics




Advantage and disadvantage in polygon representation

* Disadvantage
* Approximation, it is hard to satisfy real time interaction
* |tis hard to edit mesh with traditional method.

* Without analytical form, geometric attribute is hard to
compute

* When expressed object with complex topology and rich
details, modeling/editing/rendering/storing will have more
burden.

Computer Graphics



Spline Surfaces

e Tensor product surfaces (“curves of curves”)

* Rectangular grid of control points
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Spline Surfaces

* Tensor product surfaces (“curves of curves”)
* Rectangular grid of control points

* Rectangular surface patch

i&i#:) Computer Graphics



Spline Surfaces

* Tensor product surfaces (“curves of curves”)
* Rectangular grid of control points

* Rectangular surface patch

 Problems:

* Many patches for complex models
* Smoothness across patch boundaries

* Trimming for non-rectangular patches

Computer Graphics




Subdivision Surfaces

* Generalization of spline curves/surfaces
* Arbitrary control meshes
e Successive refinement(subdivision)
e Converges to Smooth limit surface

e Connection between splines and meshes

*
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Subdivision Surfaces

e Successive refinement(subdivision)
e Converges to Smooth limit surface
e Connection between splines and meshes

* Arbitrary control meshes
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* Generalization of spline curves/surfaces




Discrete Surfaces: Point Sets, Meshes

" Flexible

= Suitable for highly
detailed scanned data

" No analytic surface
" No inherent “editability”

Mesh editing

Computer Graphics




Mesh Processing & Editing
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Mesh Denoising

* Mesh Denoising (aka Smoothing, Filtering, Fairing)

Input: Noisy mesh (scanned or other)
Output: Smooth mesh
How: Filter out high frequency noise

Computer Graphics




Laplacian Smoothing

* An easier problem: How to smooth a curve?

(Pi1 T P=1)/2-D;

L(pi)_%(pﬂ-l —P; )+%(pi—1 _pi)

Computer Graphics




Laplacian Smoothing

An easier problem: How to smooth a curve?

Pi 1
o P P; +EL(P1')

Finite difference
discretization of second
derivative > L(p,)= (P,ﬂ—l' )_|_ (p.,—m)
= Laplace operator in
one dimension

Computer Graphics




Laplacian Smoothing on Meshes

Same as for curves:
p " =p))+2Ap))

i

N.= {k,[,mn}
p,=(x;, vy Z)

What is Ap, ?

wx
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Mesh Denoising

* We generate artificially a noisy mesh by random normal

displacement along the normal.

Computer Graphics




Mesh Denoising with Filtering

The quality of a noisy mesh is improved by applying local averagings, that
removes noise but also tends to smooth features.

The operator W : R™ — R™ can be used to smooth a function, but it can also
be applied to smooth the position W &€ R3*™ _ Since they are stored as row of

a matrix, one should applies W* (transposed matrix) on the right side.
XO® =X and X@Y = xOw-

Computer Graphics




Mesh Denoising with Filtering




Mesh Subdivision

* No regular structure as for curves

* Arbitrary number of edge-neighbors

* Different subdivision rules for each valence

Computer Graphics




Subdivision Rules

« How the connectivity changes

« How the geometry changes
— Old points
— New points

AV
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Subdivision Zoo

« Classification of subdivision schemes

Primal Faces are split into sub-faces

Dual Vertices are split into multiple vertices

Approximating

Control points are not interpolated

Interpolating

Control points are interpolated

AN
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Subdivision Zoo

e Classification of subdivision schemes

Primal (face split)

> e
Triangular meshes

\VARNRY VAVAVAVAY;

—

Quad Meshes

Approximating

Loop(C?)

Catmull-Clark(C?)

Interpolating | Mod. Butterfly (C!)

Kobbelt (C)

« Many more...

Computer Graphics
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Dual (vertex split)

Doo-Sabin, Midedge(C?)

Biquartic (C?)




Catmull-Clark Subdivision
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Doo-Sabin Subdivision
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Mesh Simplification

e Surface mesh simplification is the process of reducing the number of
faces used in a surface mesh while keeping the overall shape, volume
and boundaries preserved as much as possible. It is the opposite of
subdivision.

Computer Graphics




Mesh Simplification

* Edges are collapsed according to a priority given by a user-supplied cost
function, and the coordinates of the replacing vertex are determined by

another user-supplied placement function.

* The algorithm terminates when a user-supplied stop predicate is met, such as
reaching the desired number of edges.

average median



Mesh Simplification

« Adaptation to hardware capabilities

i&i#:) Computer Graphics



Shapes and Deformations

* Why deformations?

* Sculpting, customization

* Character posing, animation

e Criteria?

* |ntuitive behavior and interface

* Interactivity



Linear Surface-Based Deformation

e Mesh Deformation

Global deformation
with intuitive
detail preservation



Mesh Deformation

Local & global
deformations
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Differential Geometry

= Tool to analyze shape

= Key notions:
. Tangent|s and normals
= Curvatures
" |aplace-Beltrami operator

Computer Graphics




Differential Coordinates

 Manipulate differential coordinates instead of spatial
coordinates

* Gradients, Laplacians, local frames
* |ntuition: Close connection to surface normal
* Find mesh with desired differential coords

e Cannot be solved exactly

* Formulate as energy minimization

Computer Graphics




Differential coordinates

» Differential coordinates are defined for triangular mesh vertices

d =L(v) =V, S > v,

i JeN(i)

average of
the neighbors

the relative
coordinate vector

Computer Graphics




Differential coordinates

» Differential coordinates are defined for triangular mesh vertices

d =L(v) =V, S > v,

i JeN(i)




Why differential coordinates?

* They represent the local detail / local shape description
* The direction approximates the normal

* The size approximates the mean curvature

. j(vi—v)ds

vey

lim
len(y)—0 |en(y)

*
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Laplacian reconstruction

* Denote by G = (V, E, P) a triangular mesh with geometry P,
embedded in R?.

* For each vertex p; € P we define the Laplacian vector:

Computer Graphics




Laplacian reconstruction

* The operator L is linear and thus can be represented by the
following matrix:

1 i = |

M, :<—d— je{j:(j,i)eE}

0 otherwise

*
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Laplacian reconstruction

* A small example of a triangular mesh and its associated
Laplacian matrix

Vl [ ]

2 141 <14 7 4 1 - -1 1151 -4
_1 3 _1 _'I _1 3 _1 _] _1 _1 4 _1 _1
-1 -1 5 -1 -1 -1 _1 _] 5 _] _1 _] _1 3 _1 _1

\ . 1 4 1 - -1-1 4 -1 -1 -1 A 4 1 -
P — 2

¥

v‘\
v
-1 -1 -1 6 -1 -1 -1 -1 '6 =1 =1 -1 -1 -1 4
-1-13 4 1
Yio

Y, 1 1-1-14 -1 -1-1 4 1

The mesh The symmetric Laplacian Ly Invertible Laplacian 2-anchor L
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Laplacian reconstruction

e Thus for reconstructing the mesh from the Laplacian

representation:

add constraints to get full rank system and therefore unique

solution, i.e. unigue minimizer to the functional

2 2
E : (x) ()
+ W. ( . — G, )

icl

HM PO 56

where [ is the index set of constrained vertices, w; > 0 are

weights and c¢; are the spatial constraints.
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Laplacian reconstruction

* Laplacian reconstruction gives smooth transformation,
interactive time and ease of user interface -using few spatial
constraints

* but doesn’t preserve details orientation and shape

~




id-As-Possible Deformation
irst developed in 2D and later extended to 3D

by Zhu and Gortler (2007)

As-Rig

" Points or segments as control objects
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As-Rigid-As-Possible Deformation

* Smooth large scale deformation
* Local as-rigid-as-possible behavior

* Preserves small-scale details

AV
2 iterations

o e oy

Initial guess 1 iterations 4 iterations
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Space Deformation

" Displacement function defined on the
ambient space

d:-R°P—> R’
" Evaluate the function on the points of the
shape embedded in the space

Twist warp
Global and local deformation of solids
[A. Barr, SIGGRAPH 84]
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Space Deformation

= Control object = lattice

(x) are
-product splines:

[

-3

" Basis functions B

trivariate tensor

n

m

N;(2)

i Ni (XN (1)

d

R

2

d(x,y,2)
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Lattice as Control Object

" Difficult to manipulate

" The control object is not
related to the shape of
the edited object

" Part of the shape in
close Euclidean distance
always deform similarly,
even if geodesically far

wx
R
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Cage-based Deformations

" Cage = crude version of the input shape
[Ju et al. 2005]




Cage-based Deformations

" Cage = crude version of the input shape
" Polytope (not a lattice)

" Each point x in space is represented w.r.t. to
the cage elements using coordinate functions

[Ju et al. 2005]
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Cage-based Deformations

" Cage = crude version of the input shape

" Polytope (not a lattice)




Coordinate Functions

 Harmonic coordinates (Joshi et al. 2007)
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Green coordinates

* Closed-form solution

* Conformal in 2D, quasi-conformal in 3D
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Polygon Mesh Processing

e http://www.pmp-book.org/

* “Geometric Modeling Based on
Polygonal Meshes”

* https://hal.inria.fr/inria-
00186820/document

Computer Graphics

Polygon Mesh
Processing

Mario Botsch
Leif Kobbelt
Mark Pauly
Pierre Alliez

Bruno Lévy



http://www.pmp-book.org/
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