

Mesh Processing

Teacher: A.prof. Chengying Gao(高成英)

E-mail: mcsgcy@mail.sysu.edu.cn

School of Data and Computer Science

What is Polygon Mesh?

 A polygon mesh is a collection of vertices, edges, and faces that defines the shape of a polyhedral object in 3D computer graphics and solid modeling.

Example – Polyhedral widgeon

6656 faces (面), 3474 vertices (顶点)

Categories of Polyhedron (多面体)

- Polyhedron are essentially linear approximation
 - Triangular meshes (三角网格)
 - Quadrilateral meshes (四边形网格)
 - Polygonal meshes (多边形网格)

Volumetric Scanning

• Build voxel structure by scanning slices

СТ

MRI

Volumetric Scanning

• Build voxel structure by scanning slices

Photogrammetry

• Reconstruction from photographs

Tower Photographs

Computer Graphics

Photogrammetry

• Reconstruction from a series of photos (video)

Range Scanning

• Reconstruction from point cloud

Getting Meshes from Real Objects

• Many models used in Graphics are obtained from real objects

Stanford dragon

- Faces : 871414
- Vertices: 437645
- Compressed: 8.2 MB in PLY format

Getting Meshes from Real Objects

- Accurate calibration is crucial
- Multiple scans required for complex objects
 - scan path planning
 - scan registration
- Scans are incomplete and noisy
 - model repair, hole filling
 - smoothing for noise removal

Range Scanning: Reconstruction

Set of raw scans

Reconstructed model

General Used Mesh Files

- General used mesh files
 - Wavefront OBJ (*.obj)
 - 3D Max (*.max, *.3ds)
 - VRML(*.vrl)
 - Inventor (*.iv)
 - PLY (*.ply, *.ply2)
 - User-defined(*.m, *.liu)

- Storage
 - Text (Recommended)
 - Binary

- Vertices
 - Start with char 'v'
 - (x,y,z) coordinates
- Faces
 - Start with char 'f'
 - Indices of its vertices in the file
- Other properties
 - Normal, texture coordinates, material, etc.

v 1.0 0.0 0.0 v 0.0 1.0 0.0 v 0.0 -1.0 0.0 v 0.0 0.0 1.0 f 1 2 3 f 1 4 2 f 3 2 4 f 1 3 4

Wavefront .obj file

```
# List of Vertices, with (x,y,z[,w]) coordinates, w is optional and defaults to 1.0.
 v 0.123 0.234 0.345 1.0
 ۷...
 ...
 # Texture coordinates, in (u, v, w] coordinates, these will vary between 0 and 1, w is optional and
default to 0.
 vt 0.500 I [0]
 vt ...
 •••
 \# Normals in (x,y,z) form; normals might not be <u>unit</u>.
 vn 0.707 0.000 0.707
 vn ...
 ...
 # Parameter space vertices in ( u [,v] [,w] ) form; free form geometry statement ( see below )
 vp 0.310000 3.210000 2.100000
 VP ...
 # Face Definitions (see below)
 f | 23
 f 3/1 4/2 5/3
 f 6/4/1 3/5/3 7/6/5
 f ...
 •••
```


Meshes: Definitions & Terminologies

Standard Graph Definition

Vertex degree (valence) = number of edges incident on vertex
deg(J) = 4, deg(H) = 2
k-regular graph = graph whose vertices all have degree k

Face: cycle of vertices/edges which cannot be shortened
F = faces =
{(A,H,G),(A,J,K,G),(B,A,J),(B,C,L,J),(C,I,J),(C,D,I),
(D,E,F),(D,I,F),(L,I,F,K),(L,J,K),(K,F,G)}

Graph is *embedded* in R^d if each vertex is assigned a position in R^d

Embedding in R²

Embedding in R³

Triangulation: straight line plane graph all of whose faces are triangles

Delaunay triangulation of a set of points: unique set of triangles such that the circumcircle of any triangle does not contain any other point

Delaunay triangulation avoids long and skinny triangles

Meshes

Topology

亏格 Genus of graph: *half* of *maximal* number of closed paths that do *not* disconnect the graph (number of "holes")

Genus(sphere)= 0 Genus(torus) = 1

Developablity (可展性)

Mesh is developable if it may be embedded in R² without distortion

Developablity (可展性)

Mesh Data Structure

- How to store geometry and connectivity?
- Geometry queries
 - What are the vertices of face #k?
 - Are vertices #i and #j adjacent?
 - Which faces are adjacent face #k?
- Geometry operations
 - Remove/add a vertex/face
 - Mesh simplification
 - Vertex split, edge collapse

Define a mesh

- Geometry
 - Vertex coordinates
- Connectivity
 - How do vertices connected?

- List of Edge
- Vertex-Edge
- Vertex-Face
- Combined

- List of vertices
 - Position coordinates
- List of faces
 - Triplets of pointers to face vertices (c1,c2,c3)
- Queries:
 - What are the vertices of face #3?
 - Answered in O(1) checking third triplet
 - Are vertices i and j adjacent?
 - A pass over all faces is necessary NOT GOOD

List of Faces – Example

V_{3} f_{3} f_{3} f_{4} f_{4} V_{4} V_{4								
vertex	coordinate	V ₂	5					
v_1	(x_1, y_1, z_1)	face	vertices (ccw)					
v ₂	(x ₂ ,y ₂ ,z ₂)	f ₁	(V ₁ , V ₂ , V ₃)					
v ₃	(x ₃ ,y ₃ ,z ₃)	f ₂	(v_2, v_4, v_3)					
v_4	(x_4, y_4, z_4)	f_3	(v_3, v_4, v_6)					
v ₅	(x ₅ ,y ₅ ,z ₅)	f_4	(v_4, v_5, v_6)					
v ₆	(x ₆ ,y ₆ ,z ₆)	•	- · · · · ·					

- Pros:
 - Convenient and efficient (memory wise)
 - Can represent non-manifold meshes
- Cons:
 - Too simple not enough information on relations between vertices & faces

- View mesh as connected graph
- Given n vertices build n*n matrix of adjacency information
 - Entry (i,j) is TRUE value if vertices i and j are adjacent
- Geometric info
 - list of vertex coordinates
- Add faces
 - list of triplets of vertex indices (v1,v2,v3)

vertex	coordinate		
v_1	(x_1, y_1, z_1)		
v_2	(x_2, y_2, z_2)		
V ₃	(x ₃ ,y ₃ ,z ₃)		
V_4	(x ₄ ,y ₄ ,z ₄)		
v ₅	(x ₅ ,y ₅ ,z ₅)		
V ₆	(x ₆ ,y ₆ ,z ₆)		

face	vertices (ccw)
f_1	(v_1, v_2, v_3)
f_2	(v_2, v_4, v_3)
f_3	(v_3, v_4, v_6)
f_4	(v_4, v_5, v_6)

	v ₁	v_2	V ₃	v ₄	V ₅	V ₆
v ₁		1	1			
v ₂	1		1	1		
V ₃	1	1		1		1
V ₄		1	1		1	1
V ₅				1		1
V ₆			1	1	1	

Adjacency Matrix – Queries

- What are the vertices of face #3?
 - O(1) checking third triplet of faces
- Are vertices i and j adjacent?
 - O(1) checking adjacency matrix at location (i,j).
- Which faces are adjacent to vertex j?
 - Full pass on all faces is necessary

- Pros:
 - Information on vertices adjacency
 - Stores non-manifold meshes
- Cons:
 - Connects faces to their vertices, BUT NO connection between vertex and its face

Half-Edge Structure

 Orientable 2D manifolds and its sub set: special polygonal meshes (适用于有向的二维流形)

Half-Edge Structure

- Half-edge (each edge corresponds to two half-edges)
 - Pointer to the first vertices
 - To adjacent face
 - To next half-edge (逆时针方向)
 - To the other half-edge of the same edge
 - To previous half-edge (opt.)

struct HE_edge {

HE_vert* vert; // vertex at the start of the half-edge
HE_face* face; // face the half-edge borders
HE_edge* pair; // oppositely oriented adjacent half-edge
HE_edge* next; // next half-edge around the face
HE_edge* prev; // prev half-edge around the face

};

Half-Edge Structure

• Face : we only need a pointer to one of its half-edge

Half-Edge Structure

- Vertices
 - 3D coordinates
 - Pointer to the half-edge starting from it

Example: half-edge structure

顶点	坐标	以此为起点 <mark>的半边</mark>	
V ₁	(x_1, y_1, z_1)	e _{2,1}	
V ₂	(x_2, y_2, z_2)	e _{1,1}	
v ₃	(x_3, y_3, z_3)	e _{4,1}	
V ₄	(x_4, y_4, z_4)	e _{7,1}	
V ₅	(x_5, y_5, z_5)	e _{5,1}	

面	半边
f ₁	e _{1,1}
f ₂	e _{3,2}
f ₃	e _{4,2}

Example (continued)

半边	起点	相邻半边	面	下条半边	前条半边
e _{3,1}	V ₃	e _{3,2}	f ₁	e _{1,1}	e _{2,1}
e _{3,2}	V ₂	e _{3,1}	f ₂	e _{4,1}	e _{5,1}
e _{4,1}	V ₃	e _{4,2}	f ₂	e _{5,1}	e _{3,2}
e _{4,2}	V 5	e _{4,1}	f ₃	e _{6,1}	e _{7,1}

1. Start at vertex

- 1. Start at vertex
- 2. Outgoing halfedge

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge
- 4. Next halfedge

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge
- 4. Next halfedge
- 5. Opposite

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge
- 4. Next halfedge
- 5. Opposite
- 6. Next
- 7. ...

Vertices adjacent to a vertex v, mesh without boundary

```
he = v->halfedge;
do {
   he = he->sym->next;
   ... // perform operations with
        // he->vertex
   } while (he != v->halfedge)
```

No "if" statements.

Basic operations

- Mark mesh boundary (标记边界点)
- Create edge adjacency (创建邻接边)
- Add vertex (增加顶点)
- Add edge (增加边)
- Add polygonal face (增加面)
- Delete polygonal face (删除面)
- Delete edge (删除边)
- Delete vertex (删除顶点)

Discussion

- Advantage and disadvantage(优缺点):
 - Adv. : Query time O(1) , operation time O(1)
 - Dis. : redundancy & only applicable to 2D manifolds
- For more information refer to
 - CGAL :
 - the Computational Geometry Algorithms Library , http://www.cgal.org/
 - Free for non-commercial use
 - OpenMesh : <u>http://www.openmesh.org/</u>
 - Mesh processing
 - Free, LGPL licence
 - Meshlab: <u>http://meshlab.sourceforge.net/</u>

- Advantage
 - Simplicity ease of description
 - Based data for rendering software/hardware
 - Input to most simulation/analysis tools
 - Output of most acquisition tools
 - laser scanner, CT, MRI, etc...

- Disadvantage
 - Approximation, it is hard to satisfy real time interaction
 - It is hard to edit mesh with traditional method.
 - Without analytical form, geometric attribute is hard to compute
 - When expressed object with complex topology and rich details, modeling/editing/rendering/storing will have more burden.

- Tensor product surfaces ("curves of curves")
 - Rectangular grid of control points

$$\mathbf{p}(u,v) = \sum_{i=0}^{k} \sum_{j=0}^{l} \mathbf{p}_{ij} N_i^n(u) N_j^n(v)$$

- Tensor product surfaces ("curves of curves")
 - Rectangular grid of control points
 - Rectangular surface patch

Spline Surfaces

- Tensor product surfaces ("curves of curves")
 - Rectangular grid of control points
 - Rectangular surface patch
- Problems:
 - Many patches for complex models
 - Smoothness across patch boundaries
 - Trimming for non-rectangular patches

Subdivision Surfaces

- Generalization of spline curves/surfaces
 - Arbitrary control meshes
 - Successive refinement(subdivision)
 - Converges to Smooth limit surface
 - Connection between splines and meshes

Subdivision Surfaces

- Generalization of spline curves/surfaces
 - Arbitrary control meshes
 - Successive refinement(subdivision)
 - Converges to Smooth limit surface
 - Connection between splines and meshes

Discrete Surfaces: Point Sets, Meshes

- Flexible
- Suitable for highly detailed scanned data
- No analytic surface
- No inherent "editability"

Mesh Processing & Editing

Mesh Denoising

Mesh Denoising (aka Smoothing, Filtering, Fairing)
 Input: Noisy mesh (scanned or other)
 Output: Smooth mesh
 How: Filter out high frequency noise

Laplacian Smoothing

• An easier problem: How to smooth a curve?

$$(\mathbf{p}_{i-1} + \mathbf{p}_{i+1})/2 - \mathbf{p}_i$$
$$L(\mathbf{p}_i) = \frac{1}{2} (\mathbf{p}_{i+1} - \mathbf{p}_i) + \frac{1}{2} (\mathbf{p}_{i-1} - \mathbf{p}_i)$$

Laplacian Smoothing

An easier problem: How to smooth a curve?

Laplacian Smoothing on Meshes

Mesh Denoising

• We generate artificially a noisy mesh by random normal displacement along the normal.

Mesh Denoising with Filtering

The quality of a noisy mesh is improved by applying local averagings, that removes noise but also tends to smooth features.

The operator $\tilde{W}: \mathbb{R}^n \to \mathbb{R}^n$ can be used to smooth a function, but it can also be applied to smooth the position $W \in \mathbb{R}^{3 \times n}$. Since they are stored as row of a matrix, one should applies \tilde{W}^* (transposed matrix) on the right side. $X^{(0)} = X$ and $X^{(\ell+1)} = X^{(\ell)} W^*$

Mesh Denoising with Filtering

Mesh Subdivision

- No regular structure as for curves
 - Arbitrary number of edge-neighbors
 - Different subdivision rules for each valence

Subdivision Rules

How the connectivity changes

- How the geometry changes
 - Old points
 - New points

Classification of subdivision schemes

Primal	Faces are split into sub-faces
Dual	Vertices are split into multiple vertices

Approximating	Control points are not interpolated
Interpolating	Control points are interpolated

Subdivision Zoo

Classification of subdivision schemes

• Many more...

Catmull-Clark Subdivision

Loop Subdivision

Doo-Sabin Subdivision

Mesh Simplification

 Surface mesh simplification is the process of reducing the number of faces used in a surface mesh while keeping the overall shape, volume and boundaries preserved as much as possible. It is the opposite of subdivision.

Mesh Simplification

- Edges are collapsed according to a priority given by a user-supplied cost function, and the coordinates of the replacing vertex are determined by another user-supplied placement function.
- The algorithm terminates when a user-supplied stop predicate is met, such as reaching the desired number of edges.

Mesh Simplification

Adaptation to hardware capabilities

Shapes and Deformations

- Why deformations?
 - Sculpting, customization
 - Character posing, animation
- Criteria?
 - Intuitive behavior and interface
 - Interactivity

Linear Surface-Based Deformation

Mesh Deformation

Mesh Deformation

Differential Geometry

- Tool to analyze shape
- Key notions:
 - Tangents and normals
 - Curvatures
 - Laplace-Beltrami operator

Differential Coordinates

- Manipulate differential coordinates instead of spatial coordinates
 - Gradients, Laplacians, local frames
 - Intuition: Close connection to surface normal
- Find mesh with desired differential coords
 - Cannot be solved exactly
 - Formulate as energy minimization

Differential coordinates

• Differential coordinates are defined for triangular mesh vertices

$$\boldsymbol{\delta}_{\mathbf{i}} = L(\mathbf{v}_{\mathbf{i}}) = \mathbf{v}_{\mathbf{i}} - \frac{1}{d_i} \sum_{j \in N(i)} \mathbf{v}_{\mathbf{j}}$$

Differential coordinates

• Differential coordinates are defined for triangular mesh vertices

$$\boldsymbol{\delta}_{\mathbf{i}} = L(\mathbf{v}_{\mathbf{i}}) = \mathbf{v}_{\mathbf{i}} - \frac{1}{d_i} \sum_{j \in N(i)} \mathbf{v}_{\mathbf{j}}$$

Why differential coordinates?

- They represent the local detail / local shape description
 - The direction approximates the normal
 - The size approximates the mean curvature

- Denote by G = (V, E, P) a triangular mesh with geometry P, embedded in R³.
- For each vertex $p_i \in P$ we define the Laplacian vector:

• The Laplacians represents the details locally.

• The operator *L* is linear and thus can be represented by the following matrix:

$$M_{ij} = \begin{cases} 1 & i = j \\ -\frac{1}{d_i} & j \in \{j : (j,i) \in E\} \\ 0 & otherwise \end{cases}$$

 A small example of a triangular mesh and its associated Laplacian matrix

The mesh

The symmetric Laplacian L_s

Invertible Laplacian

2-anchor \tilde{L}

• Thus for reconstructing the mesh from the Laplacian representation:

add constraints to get full rank system and therefore unique solution, i.e. unique minimizer to the functional

$$\left\| M \cdot P^{(x)} - \delta^{(x)} \right\|^{2} + \sum_{i \in I} w_{i} \left(p_{i}^{(x)} - c_{i}^{(x)} \right)^{2}$$

where I is the index set of constrained vertices , $w_i > 0$ are weights and c_i are the spatial constraints.

- Laplacian reconstruction gives smooth transformation, interactive time and ease of user interface -using few spatial constraints
- but doesn't preserve details orientation and shape

As-Rigid-As-Possible Deformation

- Points or segments as control objects
- First developed in 2D and later extended to 3D by Zhu and Gortler (2007)

As-Rigid-As-Possible Deformation

- Smooth large scale deformation
- Local as-rigid-as-possible behavior
 - Preserves small-scale details

 Displacement function defined on the ambient space

$$\mathbf{d}: \mathbf{R}^3 \to \mathbf{R}^3$$

 Evaluate the function on the points of the shape embedded in the space

$$\mathbf{x}' = \mathbf{x} + \mathbf{d}(\mathbf{x})$$

Twist warp Global and local deformation of solids [A. Barr, SIGGRAPH 84]

Space Deformation

- Control object = lattice
- Basis functions B_i(x) are trivariate tensor-product splines:

$$\mathbf{d}(x, y, z) = \sum_{i=0}^{l} \sum_{j=0}^{m} \sum_{k=0}^{n} \mathbf{d}_{ijk} N_i(x) N_j(y) N_i(z)$$

Lattice as Control Object

- Difficult to manipulate
- The control object is not related to the shape of the edited object
- Part of the shape in close Euclidean distance always deform similarly, even if geodesically far

Cage-based Deformations

- Cage = crude version of the input shape
- Polytope (not a lattice)

[Ju et al. 2005]

Cage-based Deformations

- Cage = crude version of the input shape
- Polytope (not a lattice)
- Each point x in space is represented w.r.t. to the cage elements using coordinate functions

$$\mathbf{x} = \sum_{i=1}^{k} w_i(\mathbf{x}) \mathbf{p}_i$$

[Ju et al. 2005]

Cage-based Deformations

- Cage = crude version of the input shape
- Polytope (not a lattice)

$$\mathbf{x}' = \sum_{i=1}^k w_i(\mathbf{x}) \mathbf{p}'_i$$

Coordinate Functions

• Harmonic coordinates (Joshi et al. 2007)

MVC

Green coordinates

- Closed-form solution
- Conformal in 2D, quasi-conformal in 3D

MVC

GC

Polygon Mesh Processing

- http://www.pmp-book.org/
- "Geometric Modeling Based on Polygonal Meshes"
- <u>https://hal.inria.fr/inria-</u> 00186820/document

Mario Botsch Leif Kobbelt Mark Pauly Pierre Alliez Bruno Lévy

